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Conjunctions, Disjunctions, and Bell-Type 
Inequalities in Orthoalgebras 
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A Iogicoalgebraic approach to the hidden variables issue is outlined. The 
motivation for studying Bell-type inequalities on orthoalgebras is given and the 
problem of conjunctions and disjunctions of compatible elements is discussed. 
A theorem concerning a very general form of Bell-type inequalities on 
orthoalgebras is proved. 

1. INTRODUCTION 

The objective of the logicoalgebraic approach to the foundations of 
quantum mechanics (see, e.g., Mackey, 1963; Jauch, 1968; Beltrametti and 
Cassinelli, 1981; Pt~ik and Pulmannovfi, 1991) is to study the most basic 
mathematical structures underlying quantum theory and their relations to the 
corresponding structures of classical statistical mechanics. In the logicoalge- 
braic approach one deals mostly with two-valued observables, usually called 
propositions. Therefore, this approach seems to be particularly well suited 
to study Bell-type inequalities, in which such observables play an essential 
role. For many years the set of all propositions for a given physical system, 
i.e., a logic of a system, was usually assumed to be an orthomodular lattice 
(OML) or orthomodular partially ordered set (orthomodular poset, OMP) 
(for a detailed definition of OML, OMP, and for other relevant definitions 
the interested reader is referred to the above-mentioned texts), but nowadays 
also more general structures are studied. These mathematical structures pos- 
sess the main features characteristic of the set ~ ( ~ )  of all projectors on a 
Hilbert space ~ and all basic notions of the Hilbert space quantum mechanics 
can be expressed within them. For example, if projectors PA, PB are repre- 
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sented, respectively, by propositions a and b, then their orthogonality is 
equivalent to a -< b' (b' is the orthocomplement of b), and their commutativity 
is equivalent to the so-called compatibility of propositions a and b, denoted 
aCb, defined with the aid of Mackey decomposition (Mackey, 1963) as 
follows: aCb iff there exist pairwise orthogonal propositions 6,/~, and c such 
that a = ~ v c and b = /~ v c, where "v"  denotes the least upper bound 
(join) with respect to the given partial order. 

States of a physical system are represented within the logicoalgebraic 
approach by probabili~ measures defined on the studied ordered structure 
L, i.e., by functions p: L ~ [0, 1] that are additive on sequences of pairwise 
orthogonal propositions. These probability measures are usually themselves 
called states on L. The number p(a) is usually interpreted as a probability 
of obtaining the desired outcome (one of the two possible outcomes) in an 
experiment designed to test the proposition a when the physical system is 
in the state represented by the measure p. Pure (mixed) states of a physical 
system are represented by probability measures which are not (are) convex 
combinations of other measures. A state p is called dispersion-free on a 
proposition a if either p(a) = 1 or p(a) = O. 

The very essence of any hidden-variables (HV) theory is to deprive 
quantum mechanics of its intrinsic statistical character. This consists in assum- 
ing that pure HV states should be dispersion-free on all propositions while 
quantum mechanical states, even pure ones, should be mixtures of HV states. 
The overwhelming success of quantum mechanics forces any HV advocate 
to require that a hypothetical HV theory should give results compatible with 
quantum mechanics. These two assumptions form the basis for numerous 
impossibility theorems produced to show that such a program is impossible 
(see, e.g., Belinfante, 1973; von Neumann, 1932; Jauch and Piron, 1963; 
Beltrametti and Cassinelli, 1981). However, up to now, there is no impossibil- 
ity theorem without additional assumptions. Every "impossibility" theorem 
does not make impossible the very idea of a HV theory, but it excludes only 
a definite class of HV theories: those HV theories which fulfil the assumptions 
of a theorem. Therefore, any "impossibility" theorem has also positive con- 
tent: It indicates what a possible HV theory could look like. 

In many impossibility theorems additional assumptions were introduced 
in order to make the very structure of a hypothetical HV theory identical or 
very close to the structure of classical mechanics. We can mention here 
the linearity of observables assumed by von Neumann (1932), the Boolean 
structure of a HV logic assumed by Beltrametti and Cassinelli (1981) and 
by Santos (1986), or the requirement that states should fulfil the so-called 
Jauch-Piron condition assumed by Jauch and Piron (1963) and by Pykacz 
(1989). Because of these additional assumptions all these impossibility theo- 
rems exclude of course only those HV theories whose structures are very 
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similar to the structure of classical mechanics. Since in general there is no 
reason to expect such similarity, gradually it has become obvious that more 
general cases should be also studied. 

2. MOTIVATION FOR PASSING TO ORTHOALGEBRAS 

A very general theorem yielding Bell-type inequalities free from the 
additional assumptions mentioned in the Introduction was proved by Pykacz 
and Santos (1991). In this theorem the very useful notion of separation 
between propositions a and b in the state p: Sp(a, b) = p(a) + p(b) - 2p(a 
^ b), where a ^ b denotes the greatest lower bound (meet) of a and b, 
introduced in slightly less general form by Santos (1986), was utilized. Santos 
(1986) showed that if a logic L is a Boolean algebra, then for any a, b E L 
and any state p on L the triangle inequality 

Sp(a, b) + Sp(b, c) >- Sp(a, c) (1) 

holds and that this inequality is equivalent to the quadrilateral inequality 

Sp(al, a2) + Sp(bl, a2) + Sp(b,, b2) >- Sp(ab b2) (2) 

This quadrilateral inequality, when written in terms of single p(a) and coinci- 
dence p(a ^ b) probabilities, takes the familiar form of the Clauser and Home 
version of Bell's inequalities: 

p(al ^ a2) + p(bl A a2) + p(bl ^ bz) - p(al ^ b2) <: p(bl) + p(a2) (3) 

Therefore, inequalities of the type (1) and (2) were called by Pykacz and 
Santos ( 1991) generalized Bell-type inequalities. 

The main result of Pykacz and Santos (1991) is the following: 

Theorem 1. Let L be an orthomodular poset and let alCa2Ca3C... Ca,Ca~, 
i.e., al, a2 . . . . .  anare "circularly compatible" propositions. If p is a state 
which is dispersion-free on a pair (ai, ai+l), then the following generalized 
Bell-type inequality holds: 

£ Sp(ak, ak+t) >-- Sp(ai, ai+l) (4) 
k= l,....n 

k~i 

where we put an+ t = a I. 
When n = 4, one obtains from (4) the quadrilateral inequality (2) and 

therefore the Clauser and Home inequality (3). 
Since all HV states are assumed to be dispersion-free on all propositions 

and the inequality (4) is preserved when mixtures of states are formed, one 
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obtains immediately the following very general impossibility theorem (Pykacz 
and Santos, 1991): 

Theorem 2. A hidden variables theory in which the set of propositions 
is an orthomodular poset and which would be able to give results compatible 
with quantum mechanics is impossible. 

The "positive" content of Theorem 2 is the following: The structure of 
the set of propositions of a possible HV theory compatible with quantum 
mechanics should not be an OMP. This is a severe restriction, since a set 
of propositions in classical mechanics--a Boolean algebra--is an OMP. 
Therefore, for those who assert that "classical = Boolean," there is no way 
back from quantum mechanics to classical mechanics: The structure of a set 
of propositions of a possible HV theory will not be more "classical" than 
the structure of the set of quantum propositions. On the contrary, it should 
be even weaker than ~ ( ~ ) - - t h e  well-known model of the logic of proposi- 
tions about quantum systems consisting of projectors onto closed subspaces 
of a Hilbert space ~ which describes the system. 

These results strongly indicate the necessity of studying Bell-type ine- 
qualities on more general algebraic structures encountered in the foundations 
of quantum mechanics, which, to the best of my knowledge, has not yet been 
done. The other motivation for such a program follows from the fact that in 
any EPR-type experiment performed to check Bell-type inequalities one deals 
with pairs of particles described with the aid of a tensor product ~ ® ~2 
of two Hilbert spaces ~ and ~2 associated, respectively, with each of the 
particles. However, contrary to the situation in the orthodox Hilbert space 
quantum mechanics, where the tensor product is a well-established notion, 
there is still no generally accepted notion of a tensor product in the logicoalge- 
braic approach (see, e.g., Aerts, 1984; Pulmannov~, 1985; Foulis, 1989; Foulis 
and Bennett, 1993; Hudson and Pulmannov~i, 1993, 1994). Moreover, some 
of the proposed definitions of a tensor products of orthomodular posets were 
so restrictive that it was later shown that the objects which they define exist 
either only in noninteresting cases or even that they do not exist at all (Randall 
and Foulis, 1979). It was noticed by Foulis (1989) that the way out is either 
to modify the definition of a tensor product and define it only on a suitably 
chosen subcategory of orthomodular posets or to pass to the more general 
category of unital orthoalgebras. 

The first possibility was chosen by Pykacz and Santos (1995), where 
Clauser-Horne-type inequalities were studied on tensor products of ortho- 
modular lattices defined in the way proposed by Hudson and Pulmannov~ 
(1993). 

The objective of the present paper is to begin the study of the second 
possibility, i.e., to study Bell-type inequalities on orthoalgebras. This should 
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prepare the ground for studying Bell-type inequalities on tensor products of 
orthoalgebras and on still more general effect algebras, which, hopefully, will 
be accomplished in the future. 

3. ORTHOALGEBRAS 

Orthoalgebras were introduced by Randall and Foulis (1979) (see also 
Hardegree and Frazer, 1981) and recently they have attracted a lot of  attention 
(see, e.g., Foulis et al., 1992; Greechie, 1992; Foulis and Bennett, 1993; 
Dalla Chiara and Giuntini, 1994; Hamhalter et al., 1995) as natural generaliza- 
tions of  orthomodular posets. A big part of  this interest is undoubtedly 
connected with previously mentioned difficulties in forming tensor products 
of OMPs, which in the case of  orthoalgebras can be more easily overcome. 
Definitions and results of the present section are quoted mainly from the 
papers by Foulis et al. (1992) and Foulis and Bennett (1993). These papers, 
as well as the paper by Hamhalter et al. (1995), provide also a lot of examples 
of interesting orthoalgebras and discuss in a detailed way their relations to 
OMPs, OMLs, and Boolean algebras. 

Definition 1. An orthoalgebra is a system (L, O, I, G)  consisting of a 
set L with two distinguished elements O and I and equipped with a partially 
defined binary operation @, which we call an orthogonal sum, that satisfies 
the following conditions: 

(a) If a ~) b is defined, then b • a is defined and a • b = b G a. 
(b) If b ~) c is defined and a • (b ~) c) is defined, then a ~) b is defined, 

( a G b )  G c i s d e f i n e d ,  a n d a O ( b ~ ) c )  = ( a O b )  G c .  
(c) For every a E L, there exists a unique b ~ L such that a G b is 

defined and a • b = L 
(d) If a ~) a is defined, then a = O. 

Definition 2. Let L be an orthoalgebra and let a, b E L. 

(a) We say that a is orthogonal to b and write a Z b iff a ~ b is defined. 
(b) If there is an element c ~ L such that a ~) c is defined and a • c 

= b, we write a -< b. 
(c) For a E L, the unique element b E L such that a • b = I is called 

the orthocomplement of a and is denoted a ' .  

It can be shown that <- is a partial order on L and that O <- a ----- I for 
all a e L. In general the meet a A b and the join a v b with respect to this 
partial order need not exist in L for arbitrary a, b E L. However, a ^ a '  and 
a v a '  always exist in L and they are equal to the least element O and the 
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greatest element I, respectively. Moreover, (a ' ) '  = a, and if a -< b, then b' 
<-- a ' ;  therefore ': L ---> L is an orthocomplementation in a bounded poset (L, 
O, I, <-). It can be shown that a _L b iff a <- b'  and that if in this case a v 
b exists in L, then it coincides with a G b. 

An orthomodular poset is an orthoalgebra L in which for any a, b E L, 
if a • b is defined, then a E) b = a v b. An orthomodular lattice is an OMP 
in which a v b exists for any a, b ~ L. Finally, a Boolean algebra is an 
OML L such that a ^ b = 0 ~ a I b for all a, b ~ L. This shows that 
orthoalgebras are on the next level of  generality in the chain of  structures 
which begins with Boolean algebras and proceeds via orthomodular lattices 
and orthomodular posets toward more general structures (effect algebras, 
Abelian RI-posets . . . .  ). 

Definition 3. A suborthoalgebra of an orthoalgebra L is a subset of L 
which is closed under the orthogonal sum and orthocomplementation map 
inherited from L. If it is a Boolean algebra, it is called a Boolean subalgebra 
of L. 

Definition 4. A subset C of an orthoalgebra L is said to be compatible 
and its elements are called jointly compatible iff there is a Boolean subalgebra 
B of  L with C C_ B. We say that the elements a, b ~ L are compatible and 
denote it aCb if {a, b} is a compatible subset of  L. A subset D of  L is said 
to be orthogonal, and the elements of  D are called jointly orthogonal, iff D 
is compatible and its elements are pairwise orthogonal. 

In orthomodular posets joint compatibility is defined as above, while 
pairwise compatibility is usually defined with the aid of  Macky decomposition 
in the way mentioned in the Introduction. However, it can be proved that 
two elements of  an OMP L are compatible iff they generate a Boolean 
subalgebra of  L, so Definition 4 is equivalent to the usual definition of 
compatible elements when OA is an OMP. 

Definition 5. A state on an orthoalgebra L is a function p: L ---> [0, 1] 
such that p(1) = I and p(a • b) = p(a) + p(b) iff a ~) b is defined. A state 
p on L is dispersion-free on a E L iff either p(a) = 0 or p(a) = 1. 

4. C O N J U N C T I O N S  AND DISJUNCTIONS IN 
ORTHOALGEBRAS 

The problem of choosing a proper algebraic representation for logical 
operations of conjunction and disjunction is as old as the logicoalgebraic 
approach itself. In particular, this problem should be carefully considered 
when one wants to study logicoalgebraic versions of Bell-type inequalities 
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since they always contain conjunctions of propositions; e.g., 'spin of the 
particle 1 is "up" and spin of the particle 2 is "down".' 

In Boolean algebras, which are Lindenbaum-Tarski algebras of theories 
governed by rules of classical logic, conjunctions and disjunctions of proposi- 
tions are represented, respectively, by meets and joins. Therefore, it seemed 
natural to keep this representation also in more general structures: orthomodu- 
lar lattices, orthomodular posets, orthoalgebras, effect algebras, etc. However, 
even Birkhoff and von Neumann, the founding fathers of the logicoalgebraic 
approach, were not completely satisfied with this choice, since the above- 
mentioned representation becomes doubtful when one considers noncompati- 
ble propositions. In order to solve this problem some theorists (cf. Jammer, 
1974, pp. 354-355) proposed to represent by meets and joins conjunctions 
and disjunctions of compatible propositions only. This works in orthomodular 
posets, where meets and joins of compatible propositions always exist, but 
not in orthoalgebras, where this property does not hold. In order to model 
conjunctions and disjunctions of pairwisely compatible elements of orthoalge- 
bras Foulis (1994) proposed to utilize Mackey decomposition, which in OAs 
takes the following form: 

Definition 6. A pair of elements a, b of an OA L is said to have a 
Mackey decomposition {a,/~, c} iff ~,/~, c are jointly orthogonal, a = a • 
c and b = b G c. 

It should be noticed (Foulis et al., 1992; Foulis, 1994) that two elements 
of an OA are compatible iff they admit a Mackey decomposition, which, 
however, in general need not be unique. 

The proposal of Foulis (1994) consists in treating the above-defined 
element c as representing the conjunction, and the element a • /~ • c as 
representing the disjunction of compatible elements a and b if the pair a, b 
has the unique Mackey decomposition and if c is the meet of a and b in L. 
In what follows I shall argue that neither of these additional assumptions 
seems to be necessary (I am grateful to Prof. D. Foulis for providing me 
with some of the arguments). 

Let us first consider the second assumption, i.e., the assumption that c 
is the meet of compatible elements a and b in L. It can be easily checked 
that in general c is a maximal lower bound of a and b in L, although it need 
not be the meet of a and b. Similarly, a @/~ • c is a minimal upper bound 
of a and b in L, although it need not be the join of a and b. Therefore, if a 
A b a n d a v b e x i s t i n L ,  t h e n a A b  = c, a v b  = ~ O / ~ O c ( a s h a p p e n s  
in orthomodular posets), and the Mackey decomposition of a and b is unique. 
On the other hand, although the uniqueness of the Mackey decomposition 
of a and b does not imply that a A b and a v b exist in L [cf., for example, 
the Wright triangle described by Foulis et al. (1992), Example 2.13, or by 
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Hamhalter et al. (1995), Example 1.6], the unique elements c and a • b • 
c are in this case naturally distinguished among all other possible maximal 
lower bounds and minimal upper bounds of a and b. Therefore, since they 
coincide with a A b and a v b if the latter exist, e.g., in Boolean algebras, 
OMLs, and OMPs, they are natural candidates for elements which could 
represent, respectively, the conjunction and the disjunction of a and b. 

Let {~i,/~, c} be the unique Mackey decomposition of compatible ele- 
ments a, b e L. Since c and a ~ / ~  q) c are, respectively, a maximal lower 
bound and a minimal upper bound of a and b in L and since they obviously 
belong to any Boolean subalgebra B of L that contains a and b, they coincide, 
respectively, with the meet a AB b and join a vB b of a and b in B. Every 
Boolean subalgebra B of L can be thought of as representing propositions 
which can be tested in a single experiment. Therefore, c = a ^B b and a q) 
/~ q) c = a v8 b can be tested in each experiment which tests a and b, and 
they regain in this way their traditional meaning of the conjunction and 
disjunction of a and b in every "local" logic associated with a single experi- 
ment. It can be also mentioned that Younce (1990) proved that an orthoalgebra 
L has the unique Mackey decomposition (UMC) property, i.e., every compati- 
ble pair of elements of L has the unique Mackey decomposition, iff the 
intersection of every pair of Boolean subalgebras of L is again a Boolean 
subalgebra of L. This means that there exists a unique "minimal" experiment 
(i.e., the experiment involving minimal number of propositions) testing simul- 
taneously compatible propositions a and b, their conjunction c, and their 
disjunction a • t5 O c. 

Finally, let us assume for a while that for a given pair of compatible 
elements a, b ~ L their Mackey decomposition is not unique, i.e., that there 
exists a family of triples {,~i, bi, ci} of different Mackey decompositions of 
a and b. Even in this case elements ci = a Ai b and di 0 bi 0 ci = a vi b, 
which now can be different in different Boolean subalgebras B,- containing 
a and b, can be interpreted as representing, respectively, conjunctions and 
disjunctions of a and b in different context-dependent measurements, i.e., in 
measurements of a and b whose results do not depend on a and b alone, but 
on the whole situation in which an experiment is performed. Such "contextual 
quantum logic" might prove indispensable in attempts to formalize logicoalge- 
braic structures of contextual hidden variables theories. However, I shall 
concentrate my attention in what follows on orthoalgebras with UMD 
property. 

In conclusion I propose to modify Foulis' (1994) idea in the following 
way: I f  a, b E L have the unique decomposition {~, b, c}, we refer to c as 
the conjunction of  a and b in L and to a q) b • c as the disjunction o f  a 
and b in L, and denote them, respectively, a&b and a tb. 
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5. BELL-TYPE INEQUALITIES ON ORTHOALGEBRAS 

Now we are in position to generalize Theorem 1 to orthoalgebras. As 
a by-product we shall obtain a proof of that theorem that is much shorter 
than the proof given originally in Pykacz and Santos (1991) and we shall show 
that one of the original assumptions of Theorem 1 was in fact unnecessary. 

Taking into account the argumentation of the previous section, let us 
define separation between compatible elements of an orthoalgebra in the 
following way: 

Definition Z If a, b are compatible elements of an orthoalgebra L and 
p is a state on L, then the separation between a and b in the state p is the number 

Sp(a, b) = p(a) + p(b) - 2p(a&b) (5) 

Let us note that this notion of  separation coincides with Santos' (1986) 
original notion when L is an orthomodular poset. 

Lemma 1. Let a, b ~ L have the unique Mackey decomposition {&/~, 
c}. Then 

Sp(a, b) -- p(a) + p(/~) (6) 

Proof Since any state p on L is additive on orthogonal elements, we have 

Sp(a, b) = p(a • c) + p(b • c) - 2p(c) 

= p(~t) + p(c) + p(b) + p(c) - 2p(c) 

= p(a) + p(b) 

The generalization of Theorem 1 to orthoalgebras is as follows: 

Theorem 3. Let L be an orthoalgebra with the UMD property and let 
alCa2Ca3C...CanCal, i.e., al, a2 . . . . .  an are "circularly compatible" ele- 
ments of L. Then for any state p on L the following generalized Bell-type 
inequality holds: 

Sp(ak, ak+l)  > Sp(ai, a i+ l )  (7 )  
k= l,...,n 

k~:l 

where we put an+ 1 = a 1. 

Proof Due to Lemma l, 

Sp(ai, a2) + Sp(a~_, a3) + " ' "  + Sp(ai-l ,  ai) + Sp(ai+l, ai+z) + " ' "  + Sp(a,,, a l )  

= p(aO + 2p(a2) + 2p(63) + "'" + 2p(6i-i) + p(t/i) + p(ai+l) + 2p(ai÷2) 

+ "'" + 2p(an) + p(t/j) 

p(ai) + p(ai.j) = Sp(ai, ai+l) 
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Since every orthomodutar poset has the UMD property, this surprisingly 
short proof is of course valid also for orthomodular posets. Let us also note that 
the assumption made in Theorem 1 that a state p should be dispersion-free 
on at least ne pair of compatible propositions is unnecessary. Therefore, the 
consequences of Theorem 3 are stronger than those of Theorem 1 since conclu- 
sions are not conditioned on the assumption that hypothetical HV states should 
be dispersion-free on all propositions. In particular, the no-go Theorem 2 can be 
generalized as follows: 

Theorem 4. A hidden variables theory in which the set of  propositions 
is an orthoalgebra with the UMD property and which would be able to give 
results compatible with quantum mechanics is impossible. 

Theorem 4 pushes the boundary of  possible HV theories further away 
from Boolean algebras than was done by Theorem 2. However,  let us note 
that in accordance with the possible "contextual" interpretation of orthoalge- 
bras that do not have the UMD property, Theorem 4 does not make impossible 
contextual HV theories whose set of  propositions has the structure of  an 
orthoalgebra. 
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